

10Gb/s SFP+ DWDM 80km with CDR Optical Transceiver Module

HTSX-1DCxx96Zx

Features

- Up to 11.3Gb/s data links
- DWDM EML transmitter and APD photo-detector
- 100 GHz ITU channel spacing with integrated wavelength locker
- Up to 80km on 9/125µm SMF
- with CDR supported 9.95 to 11.3Gb/s reference-free
- Duplex LC/UPC type pluggable optical interface
- Support Digital Diagnostic Monitoring interface
- Metal enclosure, for lower EMI
- RoHS compliant and lead-free
- Hot-pluggable SFP+ footprint
- Single +3.3V power supply
- Compliant with SFF+MSA and SFF8472
- Case operating temperature

Commercial: $0 \sim +70^{\circ}$ C Extended: $-10 \sim +80^{\circ}$ C Industrial: $-40 \sim +85^{\circ}$ C

Applications

- 10GBASE-ZR/ZW & 10G Ethernet
- SDH STM64
- Other Optical Links

Part Number Ordering Information

Part Number	Data Rate (Gb/s)	Wavelength (nm)	Transmission Distance(km)	Temperature (°C) (Operating Case)
HTSX- 1DCxx96ZC	10.3125	Refer to wavelength selection	80km SMF	0~70 commercial
HTSX- 1DCxx96ZE	10.3125	Refer to wavelength selection	80km SMF	-10~80 Extended

HTSX-		Refer to		
1DCxx96ZI	10.3125	wavelength	80km SMF	-40~85 Industrial
IDOXX90ZI		selection		

Wavelength Selection: C-band λc Wavelength Guide Pin Descriptions

Channel	Wavelength (nm)	Frequency (THZ)	Channel	Wavelength (nm)	Frequency (THZ)
C17	1563.86	191.70	C39	1546.12	193.90
C18	1563.05	191.80	C40	1545.32	194.00
C19	1562.23	191.90	C41	1544.53	194.10
C20	1561.42	192.00	C42	1543.73	194.20
C21	1560.61	192.10	C43	1542.94	194.30
C22	1559.79	192.20	C44	1542.14	194.40
C23	1558.98	192.30	C45	1541.35	194.50
C24	1558.17	192.40	C46	1540.56	194.60
C25	1557.36	192.50	C47	1539.77	194.70
C26	1556.55	192.60	C48	1538.98	194.80
C27	1555.75	192.70	C49	1538.19	194.90
C28	1554.94	192.80	C50	1537.40	195.00
C29	1554.13	192.90	C51	1536.61	195.10
C30	1553.33	193.00	C52	1535.82	195.20
C31	1552.52	193.10	C53	1535.04	195.30
C32	1551.72	193.20	C54	1534.25	195.40
C33	1550.92	193.30	C55	1533.47	195.50
C34	1550.12	193.40	C56	1532.68	195.60
C35	1549.32	193.50	C57	1531.90	195.70
C36	1548.51	193.60	C58	1531.12	195.80
C37	1547.72	193.70	C59	1530.33	195.90

C38	1546.92	193.80	C60	1529.55	196.00
Non-ITU		ngth between m-1563.86	C61	1528.77	196.10

1. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	Ts	-40	85	°C	
Power Supply Voltage	Vcc	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	5	95	%	
Damage Threshold	TH₀	0		dBm	

2. Recommended Operating Conditions and Power Supply Requirements

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Operating Case	T	0		70	°C	commercial
Temperature	T _{OP}	-40		85	°C	Industrial
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Data Rate			10.3125		Gb/s	
Control Input Voltage High		2		Vcc	V	
Control Input Voltage Low		0		0.8	V	
Link Distance (SMF)	D			80	km	9/125um

3. General Description

HTF'HTSX-1DCxx96Zx SFP+ transceiver is designed for use in 10-Gigabit Ethernet links up to 80km over single mode fiber. The module consists of DWDM EML Laser, APD and Preamplifier in a high-integrated optical sub-assembly. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF8472. This module is designed for single mode fiber and operates at a nominal wavelength of 100GHz ITU Grid, C Band DWDM wavelength.

HTSX-1DCxx96Zx transceivers provide a unique enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver

temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range.

The SFP+ MSA defines a 256-byte memory map in EEPROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged.

4. Pin Assignment and Pin Description

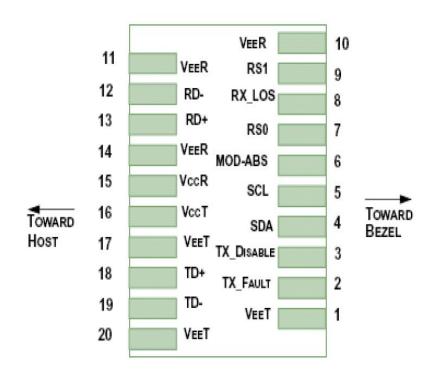


Figure 1. Diagram of host board connector block pin numbers and names

Pin	Symbol	Name/Description	Notes
1	V_{EET}	Transmitter Ground (Common with Receiver Ground)	1
2	T _{FAULT}	Transmitter Fault.	2
3	T _{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	4
5	SCL	2-wire Serial Interface Clock Line	4
6	MOD_ABS	Module Absent. Grounded within the module	4

7	RS0	Rate Select 0	5
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	6
9	RS1	No connection required	
10	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
11	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
15	V _{CCR}	Receiver Power Supply	
16	V _{CCT}	Transmitter Power Supply	
17	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. TFAULT is an open collector/drain output, which should be pulled up with a $4.7k\Omega-10~k\Omega$ resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc + 0.3V.A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- 4. Should be pulled up with $4.7k\Omega$ $10k\Omega$ on host board to a voltage between 2.0V and 3.6V. MOD_ABS pulls line low to indicate module is plugged in.
- 5. Internally pulled down per SFF-8431 Rev 4.1.
- 6. LOS is open collector output. It should be pulled up with $4.7k\Omega 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

5. Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max	Unit	Notes		
Power Consumption	р			1.8	W			
Supply Current	Icc			520	mA			
Transmitter								

Vcc	-0.3		4.0	V	
	15			mV	
Vin,pp	120		850	mVpp	
Zin	90	100	110	Ohm	1
			10	us	
Vdis	Vcc-1.3		Vcc	V	
Ven	Vee		Vee +0.8	V	2
Red	ceiver				
Vout,pp	300		850	mVpp	
Zout	90	100	110	Ohm	3
Tr/Tf	28			ps	4
VlosH	Vcc-1.3		Vcc	V	5
VlosL	Vee		Vee +0.8	V	5
PSR	100			mVpp	6
	Vin,pp Zin Vdis Ven Rec Vout,pp Zout Tr/Tf VlosH VlosL	15	Vin,pp 120 Zin 90 100 Vdis Vcc-1.3 Ven Vee Receiver Vout,pp 300 Zout 90 100 Tr/Tf 28 VlosH Vcc-1.3 VlosL Vee	15 850 Vin,pp 120 850 Zin 90 100 110 Vdis Vcc-1.3 Vcc Ven Vee +0.8 Receiver Vout,pp 300 850 Zout 90 100 110 Tr/Tf 28 VlosH Vcc-1.3 Vcc VlosL Vee +0.8	15 mV Vin,pp 120 850 mVpp Zin 90 100 110 Ohm Vdis Vcc-1.3 Vcc V Ven Vee Vee V Vout,pp 300 850 mVpp Zout 90 100 110 Ohm Tr/Tf 28 ps VlosH Vcc-1.3 Vcc V VlosL Vee Vee V +0.8 V Vee V

Notes:

- 1. Connected directly to TX data input pins. AC coupled thereafter.
- 2. Or open circuit.
- 3. Input 100 ohms differential termination.
- 4. These are unfiltered 20-80% values.
- 5. Loss of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.
- 6. Receiver sensitivity is compliant with power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value applied through the recommended power supply filtering network.

6. Optical Characteristics

The following optical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Typical	Max	Unit	Notes			
	Transmitter								
Optical Wavelength	λc	λc -0.1		λc +0.1	nm	1			

Center Wavelength Spacing			100		GHz	
Optical Spectral Width	Δλ			1	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Average Optical Power	P _{AVG}	0		4	dBm	2
Optical Extinction Ratio	ER	6			dB	
Transmitter and Dispersion Penalty	TDP			3	dB	
Transmitter OFF Output Power	POff			-30	dBm	
Relative Intensity Noise	RIN			-128	dB/H z	
Transmitter Eye Mask		Compliant with IEEE802.3ae				
	Re	ceiver				
Center Wavelength	λς	1480		1580	nm	
Receiver Sensitivity (Average Power)	Sen.			-24	dBm	3
Input Saturation Power (overload)	Psat	-6			dBm	
LOS Assert	LOSA	-35			dB	
LOS De-assert	LOSD			-26	dBm	
LOS Hysteresis	LOSH	0.5			dBm	

Notes:

- 1. Ac refer to wavelength selection, and corresponds to approximately 0.8 nm
- 2. Class 1 Laser Safety per FDA/CDRH and IEC-825-1 regulations.
- 3. Measured with Light source 1528.77~1563.86nm, ER=6.0dB; BER =<10^-12 @10.3125Gbps, PRBS=2^31-1 NRZ.

7. Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF8472 Rev10.2 with internal calibration mode. For external calibration mode please contact our sales staff.

Parameter	Symbol	Min.	Max	Unit	Notes
Temperature monitor absolute error	DMI_ Temp	-3	3	degC	Over operating temp
Supply voltage monitor absolute error	DMI _VCC	-0.15	0.15	V	Full operating range

RX power monitor absolute error	DMI_RX	-3	3	dB	
Bias current monitor	DMI_ bias	-10%	10%	mA	
TX power monitor absolute error	DMI_TX	-3	3	dB	

8. Mechanical Dimensions

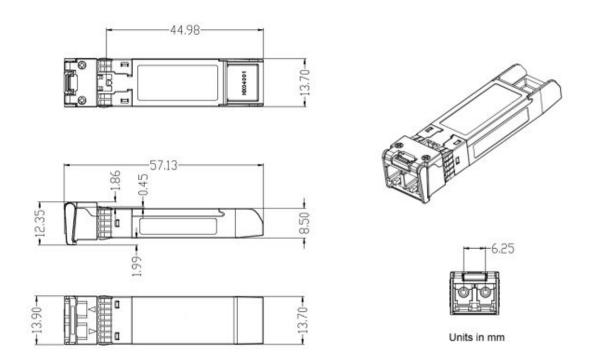


Figure 2. Mechanical Outline