What is OADM (Optical Add Drop Multiplexer)?
154 2024-03-13

The significant growth in bandwidth demand has resulted in the utilization of fiber infrastructure reaching its limits. To fulfill this requirement, optical add-drop multiplexers (OADMs) were introduced in metro/access networks, serving as the simplest elements to introduce wavelength management capabilities by enabling the selective add and drop of optical channels. Since the OADM is based on low-loss, low-cost passive devices and does not need any power supply, a reliable, cost-effective and scalable network can be achieved with its help.

As a key component for DWDM and UW-WDM (ultra wide wavelength division multiplexing) optical networks, OADM is used for selectively dropping and inserting optical signals into a transparent DWDM network. We know that the main function of an optical multiplexer is to couple two or more wavelengths into the same fiber. If a demultiplexer is placed and properly aligned back-to-back with a multiplexer, it is clear that in the area between them, two individual wavelengths exist. This makes it possible for OADM to remove or insert individual wavelengths.

Configurations and Functions of the OADM

An OADM generally consists of three parts: an optical multiplexer and demultiplexer, a method of reconfiguring the paths between the optical demultiplexer and the optical multiplexer, as well as a set of ports for adding and dropping signals. The multiplexer is used to couple two or more wavelengths into the same fiber. Then the reconfiguration can be achieved by a fiber patch panel or by optical switches that direct the wavelengths to the optical multiplexer or to drop ports. The demultiplexer separates the multiple wavelengths into a fiber and directs them to many fibers.


Thin-film filter (TFF) for OADM configuration with TFF, an arbitrary signal wavelength is branched/dropped from wavelength-multiplexed signals via a narrow band-pass filter (BPF), whereby only the desired signal wavelength being transmitted while others reflected. Meanwhile, an arbitrary signal wavelength can be inserted/added into wavelength-multiplexed signals via a narrow BPF, whereby the desired signal wavelength being transmitted is combined with the reflected signal wavelengths.